+ #0072

Secular evolution of W isotope anomalies in the Pilbara Craton, NW Australia and late accretion models

J.Tusch¹, C.Münker¹, M.Jansen¹, E. Hasenstab¹, C.S.Marien¹, F. Kurzweil¹, M.Van Kranendonk²

¹Department of Geoscience, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany (*email: jonastusch@gmx.de)

²Australian Center for Astrobiology, University of New South Wales, Australia

The record of ¹⁸²W isotope anomalies in terrestrial rocks can provide important insight into the timescales of late accretion, early silicate differentiation and early planetary processes in general. Unfortunately, most terrestrial ¹⁸²W isotope studies only provide "snapshots" of the early rock record and rarely considered W redistribution by secondary processes that would also bias ¹⁸²W isotope systematics. This might complicate any reconstruction of the secular ¹⁸²W isotope evolution and direct comparisons to HSE systematics. Here, we present a comprehensice dataset for mantle-derived and crustal rocks from the Pilbara Craton, NW Australia. Mantle-derived rocks provide snapshots of the ambient mantle composition, whereas the crustal rocks provide a long-term average of crust-mantle evolution. By combining ¹⁸²W isotope analyses with high-precision isotope dilution measurements

-

+

Cite abstract as:

Tusch, J., Münker, C., Jansen, M., Hasenstab, E, et al. (2019) Secular evolution of W isotope anomalies in the Pilbara Craton, NW Australia and late accretion models. Paneth Kolloquium, Nördlingen (Germany), abstract URL: http://www.paneth.eu/PanethKolloquium/2019/0072.pdf (abstract #0072).