+ #0091

Preliminary TEM and NanoSIMS analysis of an anhydrous lithic clast from the CB/CH-like carbonaceous chondrite Isheyevo

Schmitt*, M., Brenker F. E., Hoppe, P., Krot, A.N. *Institute for Geosciences, Goethe University, Altenhöferallee 1, 60438 Frankfurt m schmitt@gmx.de.

Fine grained material in the lithic clasts of the CB/CH-like meteorite Isheyevo is highly enriched in 15 N. No direct in situ correlation between highly 15 N enriched hotspots (up to $\sim +4000\%$) [1] and distinct mineral phases could be ascertained so far.

Here we report on a new attempt to combinde TEM and NanoSIMS techniques to identify primary and secondary carrier phases of the $\delta^{15}N$ isotope anomalie. NanoSIMS N-isotope mappings were performed on two FIB sections of an Isheyevo anhydrous lithic clast. Hot spots of high ^{15}N enrichments (3956 \pm 193 % and 3058 \pm 114 %) have been measured in one FIB section. A second FIB section of the same clast shows a more homogeneous distribution of the ^{15}N enrichments.

The hotspot regions will be studied in detail applying TEM techniques (EELS, EFTEM, SAED, EDX, HRTEM) to identify the mineral phase that carries the primary ¹⁵N anomaly.

[1] Bonal, L. et al. (2010) GCA 74, 6590-6609.

+

- 4

Cite abstract as:

Schmitt, M., Brenker, F.E., Hoppe, P., Krot, A.N. (2013) Preliminary TEM and NanoSIMS analysis of an anhydrous lithic clast from the CB/CH-like carbonaceous chondrite Isheyevo. Paneth Kolloquium, Nördlingen (Germany), abstract URL: http://www.paneth.eu/PanethKolloquium/2013/0091.pdf (abstract #0091).