+ #0039

⁴⁰Ar-³⁹Ar step heating of Ries impact melts.

Schwarz*, W.H., Lippolt, H.J. (†), *Institute of Earth Sciences, Heidelberg University, D-69120 Heidelberg winfried.schwarz@geow.uni-heidelberg.de.

The Nördlinger Ries impact crater is one of the most intensely studied impact crater, but the age of the impact crater (14.59 \pm 0.10 Ma (1 σ)) was primarily constrained by its ejecta - the Moldavites - using ⁴⁰Ar-³⁹Ar step heating techniques (see age compilations in e.g. [1], [2]).

Melt glasses ("Flädle") from two locations and melt particles (size c. 1cm) from one location (quarry Otting) were measured in two series by ⁴⁰Ar-³⁹Ar step heating.

All age spectra (except 1) show a hump shape spectrum typical for samples containing excess argon (e.g. [3]) and have integrated 40 Ar- 39 Ar ages between c. 14.9 and 20.3 Ma. Only one sample with a flat spectrum, with increasing ages at high temperatures, yield a plateau age of 14.6 ± 0.1 (0.2) Ma (1 σ) (identical with the Moldavite mean age) and an integrated age of 14.9 ± 0.1 (0.2) Ma (1 σ). The other six samples display Ar-Ar age spectra with minimum ages between 14.7 and 18.8 Ma which are commonly considered as upper limit of the real age.

[1] Di Vincenzo G. and Skála R. 2009. GCA 73:493-513.

[2] Buchner E. et al. 2010. MAPS 45:662-674.

[3] McDougall I. and Harrison T.M. 1999. Oxford University Press.

+

+

Cite abstract as:

Schwarz, W.H. (2013) 40Ar-39Ar step heating of Ries impact melts. Paneth Kolloquium, Nördlingen (Germany), abstract URL: http://www.paneth.eu/PanethKolloquium/2013/0039.pdf (abstract #0039).