#0006

The Hf-W chronology of FUN CAIs

J. C. Holst*, M. Olsen, C. Paton, K. Nagashima, M. Schiller, D. Wielandt, K. K. Larsen, J. N. Connelly, J. K. Jørgensen, A. N. Krot, Å. Nordlund, M. Bizzarro, *Centre for Star and Planet Formation, Natural History Museum, Uni. Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen, Denmark, jcholst@snm.ku.dk.

Refractory inclusions (CAIs) represent the oldest solar system solids and provide information on the formation of the Sun and its protoplanetary disk. CAIs carry evidence of short-lived radioisotopes (e.g. ²⁶Al and ¹⁸²Hf) produced in stars and added to the protosolar cloud before or during its collapse. Whereas most CAIs formed with a canonical 26 Al/ 27 Al of \sim 5×10⁻⁵, rare CAIs (FUN CAIs) record nucleosynthetic isotopic heterogeneity and ²⁶Al/²⁷Al $<5\times10^{-6}$, possibly reflecting their formation before canonical CAIs. Thus, FUN CAIs may offer a unique time-window into the earliest solar system and the origin of short-lived radioisotopes. However, their chronology is unknown. We show that a FUN CAI with a condensation origin from a solar gas formed coevally with canonical CAIs, but with 26 Al/ 27 Al of $\sim 3 \times 10^{-6}$. Admixing of stellar-derived ²⁶Al to the disk occurred during the epoch of CAIformation and, therefore, the ²⁶Al-²⁶Mg systematics of CAIs cannot define their formation interval. In contrast, our results support ¹⁸²Hf homogeneity and chronological significance of the ¹⁸²Hf-¹⁸²W clock.

Cite abstract as:

Holst, J. C., Olsen, M., Paton, C., Nagashima, K., et al. (2013) The Hf-W chronology of FUN CAIs. Paneth Kolloquium, Nördlingen (Germany), abstract URL: http://www.paneth.eu/PanethKolloquium/2013/0006.pdf (abstract #0006).