+ #0186

+

Distribution of heavy p-process isotopes in extraterrestrial materials

Peters*, S.T.M., Münker, C., Schulz, T.,*Universität zu Köln, Greinstrasse 4, 50939 Köln, Germany, stefan.peters@uni-koeln.de.

The discovery of nucleosynthetic isotope anomalies for p-process ¹⁸⁰W in iron meteorites has provoked interest in the distributions of other heavy p-process isotopes in early solar system materials [1]. Such studies are analytically challenging, because of the low relative abundances of p-process isotopes. We present analytical strategies and data on p-process ¹⁷⁴Hf in extraterrestrial silicate materials, as well as preliminary data on p-process ¹⁹⁰Pt in irons. We found that ¹⁷⁴Hf, and possibly also ¹⁹⁰Pt, were homogeneously distributed in the solar system at the time of parent body formation. These observations challenge the interpretation of a nucleosynthetic origin for the ¹⁸⁰W anomalies. One possible explanation is that ¹⁸⁰W was carried by a presolar phase that survived nebular processes after carriers for ¹⁷⁴Hf and ¹⁹⁰Pt had been destroyed. Importantly, the homogeneous distribution of ¹⁷⁴Hf and ¹⁹⁰Pt indicate that the ¹⁷⁶Lu-¹⁷⁶Hf and to lesser extent the ¹⁹⁰Pt-¹⁸⁶Os chronometers are unaffected by nucleosynthetic heterogeneity.

[1] Schulz et al., 2011, Goldschmidt Confer. Prague

Cite abstract as:

Peters, S.T.M., Münker, C., Schulz, T. (2012) Distribution of heavy p-process isotopes in extraterrestrial materials. Paneth Kolloquium, Nördlingen (Germany), abstract URL: http://www.paneth.eu/PanethKolloquium/2012/0186.pdf (abstract #0186).

+

+