+ #0148

Possible supernova and nova origins for presolar silicon carbide grains of type AB

Fujiya, W*. and Hoppe, P. Max-Planck-Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany. wataru.fujiya@mpic.de

Type "AB" presolar SiC grains are characterized by ${}^{12}C/{}^{13}C < 10$. Their stellar sources are not wellunderstood, and J-type carbon stars have been proposed as possible candidates [1]. We carried out Mg-Al (17 grains), S (34 grains) and Ca-Ti (10 grains) isotope analyses for 34 AB grains in order to clarify their origins. Their ²⁶Al abundances are comparable to the previous reports (e.g., [1]). Two AB grains show large ³³S excesses of up to ~900 % along with ~normal ³⁴S abundances, while 8 grains exhibit depletions of 33 S and/or 34 S (down to -600 ‰ and -300 ‰ for 33 S and 34 S) relative to solar abundances. No grains have ⁴⁴Ca excesses due to ^{44}Ti decay beyond the 2σ errors. The grains with 33,34S deficits possibly originated from Type II supernovae (SNeII) [2]. The steller sources for the grains showing ³³S enrichments are less clear, but it might be SNeII or novae [3]. We will perform N and Mg-Al isotope analyses for further information about the steller origins of the S-anomalous grains.

[1] Amari, S. et al. (2001) ApJ 559, 463-483. [2] Hoppe, P. et al. (2012) ApJL 745, L26. [3] José, J. & Hernanz, M. (1998) ApJ 494, 680-690.

+

+

+

Cite abstract as:

Fujiya, W., Hoppe, P. (2012) Possible supernova and nova origins for presolar silicon carbide grains of type AB. Paneth Kolloquium, Nördlingen (Germany), abstract URL:

http://www.paneth.eu/PanethKolloquium/2012/0148.pdf (abstract #0148).